Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast
نویسندگان
چکیده
Cytokinesis separates cells by contraction of a ring composed of filamentous actin (F-actin) and type II myosin. Iqg1, an IQGAP family member, is an essential protein in Saccharomyces cerevisiae required for assembly and contraction of the actomyosin ring. Localization of F-actin to the ring occurs only after anaphase and is mediated by the calponin homology domain (CHD) of Iqg1, but the regulatory mechanisms that temporally restrict actin ring assembly are not well defined. We tested the hypothesis that dephosphorylation of four perfect cyclin-dependent kinase (Cdk) sites flanking the CHD promotes actin ring formation, using site-specific alanine mutants. Cells expressing the nonphosphorylatable iqg1-4A allele formed actin rings before anaphase and exhibited defects in myosin contraction and cytokinesis. The Cdc14 phosphatase is required for normal cytokinesis and acts on specific Cdk phosphorylation sites. Overexpression of Cdc14 resulted in premature actin ring assembly, whereas inhibition of Cdc14 function prevented actin ring formation. Cdc14 associated with Iqg1, dependent on several CHD-flanking Cdk sites, and efficiently dephosphorylated these sites in vitro. Of importance, the iqg1-4A mutant rescued the inability of cdc14-1 cells to form actin rings. Our data support a model in which dephosphorylation of Cdk sites around the Iqg1 CHD by Cdc14 is both necessary and sufficient to promote actin ring formation. Temporal control of actin ring assembly by Cdk and Cdc14 may help to ensure that cytokinesis onset occurs after nuclear division is complete.
منابع مشابه
The Mitotic Exit Network and Cdc14 phosphatase initiate cytokinesis by counteracting CDK phosphorylations and blocking polarised growth.
Polarisation of the actin cytoskeleton must cease during cytokinesis, to support efficient assembly and contraction of the actomyosin ring at the site of cell division, but the underlying mechanisms are still understood poorly in most species. In budding yeast, the Mitotic Exit Network (MEN) releases Cdc14 phosphatase from the nucleolus during anaphase, leading to the inactivation of mitotic fo...
متن کاملCyk3, a novel SH3-domain protein, affects cytokinesis in yeast
Cytokinesis requires the wholesale reorganization of the cytoskeleton and secretion to complete the division of one cell into two. In the budding yeast Saccharomyces cerevisiae, the IQGAP-related protein Iqg1 (Cyk1) promotes cytokinetic actin ring formation and is required for cytokinesis and viability [1-3]. As the actin ring is not essential for cytokinesis or viability, Iqg1 must act by anot...
متن کاملAsymmetric spindle pole localization of yeast Cdc15 kinase links mitotic exit and cytokinesis
The inactivation of mitotic cyclin-dependent kinases (CDKs) during anaphase is a prerequisite for the completion of nuclear division and the onset of cytokinesis [1, 2]. In the budding yeast Saccharomyces cerevisiae, the essential protein kinase Cdc15 [3] together with other proteins of the mitotic exit network (Tem1, Lte1, Cdc5, and Dbf2/Dbf20 [4-7]) activates Cdc14 phosphatase, which triggers...
متن کاملNur1 Dephosphorylation Confers Positive Feedback to Mitotic Exit Phosphatase Activation in Budding Yeast
Substrate dephosphorylation by the cyclin-dependent kinase (Cdk)-opposing phosphatase, Cdc14, is vital for many events during budding yeast mitotic exit. Cdc14 is sequestered in the nucleolus through inhibitory binding to Net1, from which it is released in anaphase following Net1 phosphorylation. Initial Net1 phosphorylation depends on Cdk itself, in conjunction with proteins of the Cdc14 Early...
متن کاملThe SIN Kinase Sid2 Regulates Cytoplasmic Retention of the S. pombe Cdc14-like Phosphatase Clp1
Cdc14-family phosphatases play a conserved role in promoting mitotic exit and cytokinesis by dephosphorylating substrates of cyclin-dependent kinase (Cdk). Cdc14-family phosphatases have been best studied in yeast (for review, see [1, 2]), where budding yeast Cdc14 and its fission yeast homolog Clp1 are regulated partly by their localization; both proteins are thought to be sequestered in the n...
متن کامل